PSEUDANTHESSIUS NEWMANAE, NEW SPECIES (COPEPODA: POECILOSTOMATOIDA: PSEUDANTHESSIIDAE) FROM MARINE TURBELLARIANS IN AUSTRALIA

ARTHUR G. HUMES

Abstract

Humes, A.G. 199706 30: Pseudanthessius newmanae, new species (Copepoda: Poecilostomatoida: Pseudanthessiidae) from marine turbellarians in Australia. Memoirs of the Queensland Museum 42(1): 227-231. Brisbane. ISSN 0079-8835.

Psetudanthessius newmanae, a new species of poccilostomatoid copepod, is associated in Australia with the marine turbellarians Tyrthosoceros lizardensis Newman \& Cannon (in press) and two undescribed species of Pseudobiceros. The female of the new copepod may be distinguished from its 37 congeners by a combination of characters: the length of the body, the length to width ratio of the caudal ramus, and the shape of the genital double-somite. This is the sccond species of Pseudanthessius recorded as associated with Turbellaria. Pseudanthessius, Copepoda, Poecilostomatoida, associates, Turbellaria, Australia.

Arthur G. Humes, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, U.S.A.; 21 March 1997.

Most of the 37 species in the genus Pseudanthessius are associated with marine invertebrates (polychaetes, bivalves, asteroids, echinoids, ophiuroids, crinoids, and holothurians). Pseudanthessius nemertoplilus Gallicn, 1936, lives with a nemertean, Lineus longissimus Sowerby, on the Atlantic coast of France. Only one species, Pseudantlessius latus Illg, 1949, is associated with Turbellaria (with Cryptophallus magnus Freeman, now known as Kaburakia excelsa Bock, in Washington and California).

This paper contains the description of a second species of Pseudanthessius living with marine turbellarians, this time in Australia.

MATERIALS AND METHODS

The copepods, collected by Dr Leslie J. Newman, were preserved in 70% ethanol. They were measured and studied in lactic acid, according to the method described by Humes \& Gooding (1964). All figurcs were drawn with the aid of a camera lucida. The letter after the explanation of each figure refers to the scale at which the figure was drawn.

Order Poecilostomatoida Thorell, 1859
Family Pseudanthessiidae
Humes \& Stock, 1972
Genus Pseudanthessius Claus, 1889
Pseudanthessius newmanae, sp. nov. (Figs la-g, 2a-k, 3a-j)

MATER1AL EXAMINED. HOLOTYPE. QMW21831, ovigerous ㅇ, from the polyclad turbellarian

Pseudobiceros, undescribed species, under rubblc, in a depth of approximately 5 m , bctween South Island and Palfrey 1sland, Lizard island lagoon, Queensland, Australia, $14^{\circ} 40^{\circ} \mathrm{S}, 145^{\circ} 28^{\prime \prime} \mathrm{E}$, L. Newman and A. Flowers collectors, 5 April 1995. ALLOTYPE: ठ (QMW21830), from Pseudobioceros, undescribed species, sublittoral, under rubble, South Passage, Coral Bay, Eel Bommie, Western Australia Australia, L. Newman and A. Flowers collectors, 5 May 1996. PARATYPES. nonovigerous \&, QMW21349, same data as for holotype. 2 ㅇㅇ, (1 in QM W21348, other dissected, in the collection of the author), from Tytthosoceros lizardensis Newman \& Cannon, in press, low water mark, South Island, Lizard Island lagoon, Queensland, Australia, $14^{\circ} 40^{\circ} \mathrm{S}, 145^{\circ} 28^{\prime} \mathrm{E}, \mathrm{L}$. Newman and A. Flowers collectors, 31 March 1995. I \% © QMW21398, from Tythosoceros lizardensis, under rubble, sublittoral, in a depth of 6 m , South Passage, Coral Bay, 'Eel Gardens', Western Australia, Australia, L. Newman and A. Flowers collectors. 4 May 1996. 2 우오, QMW21399, 1 ठ (QMW21399), from Pseudobioceros, undescribed species, sublittoral, undcr rubble, South Passage, Coral Bay, Eel Bommie, Western Australia Australia, L. Newman and A. Flowers collectors, 5 May 1996.

DESCRIPTION. Female (description based on specimens from Tyithosoceros lizardensis at Lizard Island): Body (Fig. 1a) elongate. Avcragc length (not including sctae on caudal rami) $1.44 \mathrm{~mm}(1.34-1.54 \mathrm{~mm}$) and greatest width $0.66 \mathrm{~mm}(0.60-0.72 \mathrm{~mm})$, based on 4 specimens. Greatest dorsoventral thickness 0.35 mm . Somite bearing leg I separated from cephalosome by dorsal transverse furrow. Epimera of metasomal somitcs posteriorly rounded. Ratio of length to width of prosome 1.58:1. Ratio of length of prosome to that of urosome 1.46:1.

Somite bearing leg 5 (Fig. 1b-d) $70 \times 172 \mu \mathrm{~m}$. Genital double-somite in dorsal view $190 \times 172 \mu \mathrm{~m}$, ratio $1.05: 1$. some what swollen laterally in anterior two-thirds, but with sides subparallel in posterior third (width $115 \mu \mathrm{~m}$). Genital areas located dorsolaterally near middle of double-somite, each area bearing 2 very unequal setae $31 \mu \mathrm{~m}$ and $14 \mu \mathrm{~m}$ and minute process (Fig. 1d). Three postgenital somites from anterior to posterior 88×102, 73×94, and $81 \times 82 \mu \mathrm{~m}$.

Caudal ramus (Fig. 1e) 112 x $39 \mu \mathrm{~m}$, ratio $2.87: 1$. Outer lateral seta $62 \mu \mathrm{~m}$, dorsal seta $27 \mu \mathrm{~m}$, both smooth. Outermost terminal seta $96 \mu \mathrm{~m}$, innermost terminal seta $140 \mu \mathrm{~m}$, and 2 median terminal setae $308 \mu \mathrm{~m}$ (outer) and $462 \mu \mathrm{~m}$ (inner), all with lateral setules.
Body surface smooth, but few minute refractile points on caudal ramus (Fig. 1e).

Egg sac (Fig. It) elongate, multiseriate, $995 \times 297 \mu \mathrm{~m}$, ratio 3.35:1. Eggs $68 \mu \mathrm{~m}$ in average diameter (range 62$70 \mu \mathrm{~m})$.

Rostral area subquadrate (Fig. 1g). Antennule (Fig. 2a) $320 \mu \mathrm{~m}$ long. Lengths of iss 7 segments (measured along their posterior nonsetiferous margins): 16 ($47 \mu \mathrm{~nm}$ along anterior margin), 101, 26, 52, 49, 31 , and $18 \mu \mathrm{~m}$, respectively. Formula for armature: $4,13.6$, $3.4+1$ aesthetasc, $2+1$ aesthetasc, and $7+1$ aesthetasc. Several setae unusually long, all smooth. Antenna (Fig. 2b) 4 -segmented, with armature $1,1,3$, and II +4 . Third segment $27 \mu \mathrm{~m}$ along outer side, $22 \mu \mathrm{~m}$ along inner side: fourth segment $35 \mu \mathrm{~m}$ along outer side and $43 \mu \mathrm{~m}$ along inner side. Two claws slender, $40 \mu \mathrm{~m}$ and $53 \mu \mathrm{~m}$. All elements smooth.

Labrum (Fig. 2c) with 2 elongate linguiform lobes. Mandible (Fig. 2d) with constricted proximal area followed on concave side by transverse row of long spinules, and on convex side by 2 small spiniform processes and minute spinules.

FIG. I. Pseudanthessius newmanae, new species. Female. a, body, dorsal (scale A); b, urosome, dorsal (B); c, urosome, ventral (B); d, urosome, lateral (B); e, anal somite and caudal ramus, dorsal (C): f, egg sac, ventral (D): g, rostral area, ventral (B). $\mathrm{A} 1=$ antennule, $\mathrm{A} 2=$ anterna.

Lash tapered with very small lateral spinules. Paragnath small lobe. Maxillule (Fig. 2e) with 4 setae. Maxilla (Fig, 21) with unamed proximal segment; distal segment with outer small smooth seta and long inner seta bearing unilateral setules. Lash long with outer row of graduated spines. Maxilliped (Fig. 2g) 3-segmented. First segment unarmed, swollen second segment with 2 setae. and small third segment with 2 minute setae and terminating in pointed tip.
Ventral area between maxillipeds and first pair of legs (Fig. 2h) slightly protuberant.

Legs 1-4 (Figs 2i-k, 3a) with 3 -segmented rami except I-segmented endopod in leg 4. Table 1 shows the formula for armature (Roman numerals indicating spines, Arabic numerals representing setae).

Third segment of endopod of leg 1 with outermost seta rather spinelike (Fig. 2i). Leg 4 (Fig. 3a) with exopod $180 \mu \mathrm{~m}$. Endopod $114 \times 36 \mu \mathrm{~m}$, ratio 3.17:1, its 2 terminal fringed spines $75 \mu \mathrm{~m}$ (outer) and $101 \mu \mathrm{~m}$ (inner). Anterior surface of endopod with slight incomplete suggestion of division. Both sides of endopod with long lateral hairlike setules.

Leg 5 (Fig. 1d) without free segment, consisting of slight ridge bearing 2 setac $52 \mu \mathrm{~m}$ and $49 \mu \mathrm{~m}$, and adjacent seta $50 \mu \mathrm{~m}$. All setae smooth.

Leg 6 represented by 2 setae, $31 \mu \mathrm{~m}$ and $14 \mu \mathrm{~m}$, on genital area (Fig. Id).

Color of living specimens unknown.
Male (description based on specimens from Pseudobiceros, undescribed species, in Western Australia): Body (Fig. 3b) with prosome more slender than in female. Length $1.12 \mathrm{~mm}(1.07-1.19 \mathrm{~mm})$ and greatest width 0.32 mm (0.29 0.36 mm), based on 3 specimens. Greatest dorsoventral thickness 0.25 mm . Ratio of length to width of prosome 1.79:1. Ratio of length of prosome to that of urosome 1.31:1.

Somite bearing leg 5 (Fig. 3c) $36 \times 86 \mu \mathrm{~m}$. Genital somite clongate, $130 \times 102 \mu \mathrm{~m}$, longer than wide; in lateral view (Fig. 3d) $133 \times 101 \mu \mathrm{~m}$. Four postgenital somites from anterior to posterior $57 \times 63,60 \times 57,52 \times 52$, and $52 \times 52 \mu \mathrm{~m}$.

Caudal ramus (Fig. 3c) resembling that of female but smaller, $73 \times 25 \mu \mathrm{~m}$, ratio 2.92:1.
Rostrum, antennule, antenna, labrum, mandible, maxillule, and maxilla similar to those in female. Maxilliped (Fig. 3c) with second segment bearing 2 setae and 2 rows of spinules. Claw (Fig.

TABLE 1. Pseudanthessius newmanae, new species.
Formula for armature.

	coxa	basis	exopod		endopod		
P_{1}	0-1	1-0	1-0,	I-1: III,1,4	1-0.	0-1;	[III, 1.4
P_{2}	0.1	1.0	I-0;	I-1; III,I,5	0-1;	0-2,	H1,1,3
P_{3}	$0-1$	1-0	I-0,	$\mathrm{I}-1 ; \mathrm{III}, \mathrm{I}, 5$	0-1;	0-2,	H,I,2
P_{4}	0-1	$1-0$	I-0;	I-1; II, I, 5	II		

3f) $165 \mu \mathrm{~m}$ long, bearing proximally 2 unequal setae, longer seta with few setules on inner side, and having large terminal lamella and small subterminal tooth.

Ventral area between maxillipeds and first pair of legs as in female.

Legs 1-4 segmented and armed as in female, except for sexual dimorphism in endopod of leg 1, with clawlike process between spine and reduced first scta (Fig. 3g, h).

Leg 5 (Fig. 3d) as in female.
Leg 6 (Fig. 3d, i) posteroventral flap on genital somite bearing 2 setae.

Spermatophore (Fig. 3j), seen only inside genital somite of male, elongate, $135 \times 44 \mu \mathrm{~m}$.
ETYMOLOGY. The new species is named for Leslie J. Newman, University of Queensland, who sent the copepods to me for study.
REMARKS. Only one species of Pseudanthessius has been recorded as associated with marine flatworms. Pseudanthessius latus Illg, 1950, lives on a polyclad turbellarian, Kaburakia excelsa Bock (see Faubel, 1983) (= Cruptophallus magnus Freeman), on the coasts of Washington and California (Illg, 1950). As Illg (1950) pointed out, Wilson's (1935) specimens of Pseudanthessius obscurus (A. Scott, 1909), from large gray flatworms in California, are P. latus.
Pseudanthessius newmanae differs from P. latus as follows: the average length of the female is 1.44 mm (versus 1.82 mm in P. latus), the second segment of the antennule is relatively short (versus exceeding the combined lengths of the five terminal segments in P. latus), the ratio of the length to the width of the caudal ramus is $2.87: 1$ (versus approximately $6: 1 \mathrm{in}$ Illg's fig. 1 k), and the endopod of leg 4 is elongate (versus inflated in Illg's fig. 1i).

FIG. 3. Pseudanthessius newmanae, new species. Female. a, leg 4 and intercoxal plate, anterior (scale B). Male. b, body, dorsal (F); c, urosome, dorsal (B); d, somite bearing leg 5, genital somite, and first postgenital somite, lateral (E); e, maxilliped, postero-inner (C); f, claw of maxilliped, antero-outer (G); g, endopod of leg 1, anterior (C); h, third segment of endopod of leg 1, anterior (H); i, genital somite and first postgenital somite, showing leg 6, ventral (E); \mathfrak{j}, spermatophore, inside body of male, lateral (E).

A combination of characters of the female will serve to separate the new species from its 37 congeners. In 16 species of Pseudanthessius the length of the body is less than 1 mm . In 12 species the ratio of length to width of the caudal ramus is 3.5:1 or more. In 5 species the ratio of the caudal ramus is less than $2: 1$. Three species cannot be distinguished from the new species by these criteria, but show other characters by which they may be separated from P. newmanae. In

Pseudanthessius sauvagei Canu, 1891, the genital double-somite of the female is slender, about 1.7:1, not laterally expanded, and the fourth segment of the antennule is elongate. In P. spinifer Lindberg, 1946, the genital double-somite of the female in dorsal view has pointed lateral processes and the mandible has a long slender blade. In P. vimulus Humes, 1977, the genital doublesomite of the female is quadrate and the longest seta of leg 5 is longer than the genital somite. In one species, Pseudmithessius faouzii Stcuer, 1940: 21, the female is unknown. The male of P. faonzii differs from the male of the new species in that the length of the body is 0.574 mm , and the caudal ramus is approximately 2:1.

The nature of the sexual dimorphism in the third segment of the endopod of leg 1 of the male, with a clawlike process between the spine and the reduced lirst seta, is unique among the 22 species of Pseudanthessius where mates are known and where the endopod of leg 1 has been described or illustrated

Pseudanthessius nemmanae necurs on three species of pseuducerotid worms (two of them undescribed) on both eastern and western coasts of Australia. The nature of the association of the copepods with the flatworms is not known. The copepods move actively on the host, and may perhaps feed on the mucus of the worms. It is of interest that Tyuthosoceros licardensis is very toxic (L.J. Newman, in correspondence).

ACKNOWILEDGEMENTS

It thank Leslie I Newman for her special effort in collecting the copepods and allowing me to study them.

LITERATURE CITED

Canu, E. 1891 . Les copépodes marins du Boulomais. V. Les semi-parasites. Bulletin Scientifique de la France et de la Belgique 23: 467-487.

Faubel, A. 1983. The Polycladida, Turbellaria. Proposal and establishment of a new system. Part 1. The Acotylea. Mitteilungen aus dem hamburgischen zoologischen Muscum und Institu 80: 17-121.
Gallen, L. 1936. Pseudanthessius nemertophilus nov. sp., copépode commensal de Lineas longissimus Sowerty. Bulletin de la Société Zoologique de France 60: $451-459$.
Humes, A.G. 1977. Pseudanthessiid copepods (Cyclopoida) assoctated with crinoids and cehinoids (Echinodermata) in the tropicat westem Pacific Ocean. Smithsonian Conributions to Zovology 243: 1-43.
Humes, A.G. \& Gooding, R.L. 1964. A method for studying the external anatomy of copepods. Crustaccana 6: 238-240.
Dlg. P.L. 1950. A new copépod, Pseudanthe.ssus lanus (Cyclopoida: Lichomolgidac), commensal with a marine natworm. Journal of the Washingom Academy of Sciences 40: 129-133
Lindberg, K. 1946. Un nouveau copépode poecilosiome de l'lade de la lamille de Lichomolgidae: Pseudanthessius spinifer. n. sp. Bulletio de la Société Zovlogique de France 70: 81-84.
Newman, L.J. \& Cannon, L.R.G. (In press.) Burlaceros, new genus and Tythosoceros, new genus (Playhhelminthes: Polycladida) frum the Great Bartier Reef, Australia, and Pappa New Guinea. Raffles Bultetin of Zvology.
Sars, G.O. 1917. An account of the Crustacea of Norway. Vol.V Copepoda Cyclopoida Parts XI and XIl Clausididae, Lichomolgidae (part). Bergen Museum, Bergen, Norway.
Scotl, A. 1909. The Copepoda of the Siboga Expedition. Par l. Free-swimming, littoral and semi-parasitic Copepoda Siboga Expedition 29a: 1-323.
Steuer, A. 1940. Uber enige Copepoda Cyclopoida der Mediterranen Amphioxussande. Nolizen des Deutsch-Italienischen Institutes für Meerestiologie in Rovigno d' Istria 11: 1-27.
Wilson, C.B. 1935. Parasitic copepods from the Pacific coast. American Midland Natural ist 16: 776-797.

